
| 1 cmaanet.org

Software selection can be a daunting task, whether it’s for

accounting, project management, scheduling, estimating,

timecard capture, contact management, or another process.

Software becomes part of your infrastructure.

Business is about doing better than the competition. Quality,

efficiency, customer service, and other processes are impacted

by software. Also impacted are cost and organizational controls

and, in turn, the risk of losing money on a project or falling

short of optimal profit on a project.

This article is meant to provide perspective when choosing

software options. Do you select software specific to the various

tasks? Do you select a modular system that facilitates each

task through subsystems that are integrated? Or do you select

a relational system where data and application controls are

centralized?

Multiple Software Applications

Different software applications are selected to maintain data

and tasks for different facets of your business. Developing

software is like a design-build construction project. The

vendors have developed their systems independently over

periods of time. Mixing and matching software components

from different software suppliers can have varied results.

Integration between different applications is never seamless,

and data generally has some level of incongruence.

Modular Software Applications

Modules are subsystems within the same software application.

Integration is how data is shared between the subsystems.

Transactional data is posted between modules.

If you take a database class, in the first week you learn about

normalizing your data structure (eliminating duplicate data). If

you have an accounts payable (AP) invoice that is entered into

an AP module and posted to both job cost and general ledger

modules, then this simple rule is broken. There is a difference

between accounting and other processes such as estimating,

project management, schedule, timecard tracking, etc. These

other subsystems generally interact with one or more of

the accounting modules. Thus you still have the limitations

presented by modular data.

Understanding Tech Options and
How They Impact Operations

Written by: Eric Malouff, CEO and Founder, TimeSuite Software

Member Communication Experience

| 2 cmaanet.org

A major component to reducing code and improving quality

and efficiency involves centralizing controls and components.

For example, the code to draw a grid should be in a system

one time. Every time a grid is used, this exact code should be

used. With separate pieces of software that are integrated, it

is less likely that the interface uses centralized controls and

components.

Posting accounting transactional data between modules is

redundant and unnecessary. This process also makes it difficult

to provide automated audit trails and to report where data is

maintained under many modules. Modular transaction data

that is generally maintained in the subsidiary, job cost, and

the general ledger also consumes a lot more space than a

relational system.

As a modular system matures, the complexity becomes

harder and harder to contain. A beast of a code base makes

maintenance and enhancements difficult. A well-coordinated

army of developers is required to pile additional code on top

of code. Over time, these systems become massive. They are

characteristically rigid and less efficient to maintain.

Relational Software Applications

A relational system doesn’t have modules. Instead, a relational

system will have facilities that use centralized data. An AP

invoice will be stored in a centralized transaction structure.

Each facility will use the same centralized address books, item

lists, transaction structure, task lists, etc.

Relational systems have other advantages. Dynamic setup

becomes possible. If you’ve ever implemented a system where

implementation decisions are irreversible, then you will

understand this concept. Relational systems have a dynamic

architecture, and thus setup decisions can be changed at

any time. Removing the coordination between modules and

subsystems simplifies the setup. Thus, a system can be set up

initially to reflect most use-case scenarios, and can be adjusted

during implementation.

Centralizing controls and components simplifies training

because each facility in the system utilizes the exact same

code and functions in the same way.

Normalized (nonredundant) data structures provide for ease-

of-use features such as automated audit trails, automated

over/under billings, automated accrued wages, and automated

retroactive allocation of over/under allocated indirect cost.

Also facilitated is reporting that isn’t limited because data

is centralized, such as percentage-of-completion financials

(including a full summary of contacts that report wages as of

the work date, not the check date).

Relational system architectures provide for a much larger

feature set.

As the system matures, the complexity is contained. A smaller

development team is preferred where production is high and

team coordination is facilitated. So, relational systems evolve

faster.

Gained efficiencies are achieved when a process is refined.

Relational systems generally provide for pliable dynamic

processes that conform to processes that are chosen by your

company — rather than processes that are dictated and include

lengthy checklists.

Conclusion

Relational architectures are advanced. Why doesn’t every

system have an advanced architecture? Because modular, full-

featured systems have been developed over the last 40 or 50

years, and it would take rewriting the software’s core to change

the architecture.

Relational architectures require software infrastructure, and

this process takes time. But development on the other side of

that infrastructure is simplified, and a software development

team can be significantly more productive.

You have many choices with the software available, and the

types of systems to incorporate into your infrastructure. Your

competitive advantage/disadvantage and, ultimately, your

reputation and profitability are impacted by the infrastructure

you put in place and maintain. A relational system provides

efficiency, advanced feature sets, ease of use, and the ability to

evolve. Relational software can be significantly less expensive

than modular software when it comes to implementation,

maintenance and upfront/ongoing vendor costs.

| 3 cmaanet.org

About the Author

Eric Malouff is a certified public accountant (CPA) who grew up in the

construction industry. His father was a dirt and asphalt contractor. Growing up,

he worked as a laborer, foreman, project manager, and estimator. In college,

he worked part time for two years as a software developer while finishing up

accounting and computer information systems degrees.

Malouff started Malouff & Company, P.C. CPAs in 1990 and practiced in public

accounting specializing within the construction industry for 18 years. He is the

CEO and founder of TimeSuite Software (founded in 1994). Visit timesuite.com.

About the Article

Republished from Construction Business Owner. Construction Business Owner

(CBO) is the leading business magazine for contractors and is designed to help

owners of construction firms run successful businesses. Founded in 2004, CBO

provides real-world business management education and knowledge that is of

real value to the owners of construction companies.

Any views and opinions expressed in this article may or may not reflect the

views and opinions of the Construction Management Association of America

(CMAA). By publishing this piece, CMAA is not expressing endorsement of the

individual, the article, or their association, organization, or company.

http://timesuite.com
https://www.constructionbusinessowner.com/software/understanding-tech-options-how-they-impact-operations?utm_source=Newsletter&utm_medium=Email&utm_campaign=CBO_Alert&oly_enc_id=2460E8090534C7G

